Shopping Cart

No products in the cart.

BS EN IEC 61400-27-1:2020

$215.11

Wind energy generation systems – Electrical simulation models. Generic models

Published By Publication Date Number of Pages
BSI 2020 100
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. Weโ€™re here to assist you 24/7.
Email:[email protected]

IEC 61400-27-1:2020 defines standard electrical simulation models for wind turbines and wind power plants. The specified models are time domain positive sequence simulation models, intended to be used in power system and grid stability analyses. The models are applicable for dynamic simulations of short term stability in power systems. This document defines the generic terms and parameters for the electrical simulation models. This document specifies electrical simulation models for the generic wind power plant topologies / configurations currently on the market. The wind power plant models include wind turbines, wind power plant control and auxiliary equipment. The wind power plant models are described in a modular way which can be applied for future wind power plant concepts and with different wind turbine concepts.

PDF Catalog

PDF Pages PDF Title
2 undefined
5 Annex ZA(normative)Normative references to international publicationswith their corresponding European publications
7 CONTENTS
13 FOREWORD
15 INTRODUCTION
Figures
Figure 1 โ€“ Classification of power system stability according to IEEE/CIGRE Joint Task Force on Stability Terms and Definitions [11]
17 1 Scope
2 Normative references
3 Terms, definitions, abbreviations and subscripts
3.1 Terms and definitions
21 3.2 Abbreviations and subscripts
3.2.1 Abbreviations
23 3.2.2 Subscripts
24 4 Symbols and units
4.1 General
4.2 Symbols (units)
28 5 Functional specification of models
5.1 General specifications
29 5.2 Wind turbine models
30 5.3 Wind power plant models
6 Formal specification of modular structures of models
6.1 General
31 6.2 Wind turbine models
6.2.1 General
6.2.2 Type 1
Figure 2 โ€“ Generic structure of WT models
32 Figure 3 โ€“ Modular structure of the type 1A WT model
Tables
Table 1 โ€“ Modules used in type 1A model
33 6.2.3 Type 2
Figure 4 โ€“ Modular structure of the type 1B WT model
Table 2 โ€“ Modules used in type 1B model
34 Figure 5 โ€“ Modular structure of the type 2 WT model
Table 3 โ€“ Modules used in type 2 model
35 6.2.4 Type 3
Figure 6 โ€“ Modular structure of the type 3A and type 3B WT models
36 Figure 7 โ€“ Modular generator control sub-structure of the type 3A and type 3B models
Table 4 โ€“ Modules used in type 3A model
37 6.2.5 Type 4
Table 5 โ€“ Modules used in type 3B model
38 Figure 8 โ€“ Modular structure of the type 4A WT model
39 Figure 9 โ€“ Modular generator control sub-structure of the type 4A model
Table 6 โ€“ Modules used in type 4A model
40 Figure 10 โ€“ Modular structure of the type 4B WT model
41 Figure 11 โ€“ Modular generator control sub-structure of the type 4B model
Table 7 โ€“ Modules used in type 4B model
42 6.3 Auxiliary equipment models
6.3.1 STATCOM
Figure 12 โ€“ Modular structure of STATCOM model
Figure 13 โ€“ Modular structure of the STATCOM control model
43 6.3.2 Other auxiliary equipment
6.4 Wind power plant models
6.4.1 General
Figure 14 โ€“ General structure of WP model
Table 8 โ€“ Modules used in STATCOM model
44 6.4.2 Wind power plant control and communication
Figure 15 โ€“ General modular structure of WP control and communication block
45 6.4.3 Basic wind power plant
Figure 16 โ€“ Single line diagram for basic WP model
Table 9 โ€“ Modules used in WP control and communication model
46 6.4.4 Wind power plant with reactive power compensation
Figure 17 โ€“ Single line diagram for WP model with reactive power compensation
Table 10 โ€“ Models and additional modules used in the basic WP model
47 7 Formal specification of modules
7.1 General
Table 11 โ€“ Models and modules used in the WP modelwith reactive power compensation
Table 12 โ€“ Global model parameters
48 7.2 Aerodynamic modules
7.2.1 Constant aerodynamic torque module
Table 13 โ€“ Initialisation variable used in module block diagrams
49 7.2.2 One-dimensional aerodynamic module
7.2.3 Two-dimensional aerodynamic module
Figure 18 โ€“ Block diagram for constant aerodynamic torque module
Figure 19 โ€“ Block diagram for one-dimensional aerodynamic module
Table 14 โ€“ Parameter list for one-dimensional aerodynamic module
50 Figure 20 โ€“ Block diagram for two-dimensional aerodynamic module
Table 15 โ€“ Parameter list for two-dimensional aerodynamic module
51 7.3 Mechanical modules
7.3.1 Two mass module
7.3.2 Other mechanical modules
7.4 Generator and converter system modules
7.4.1 Asynchronous generator module
Figure 21 โ€“ Block diagram for two mass module
Table 16 โ€“ Parameter list for two-mass module
52 7.4.2 Type 3A generator system module
Figure 22 โ€“ Block diagram for type 3A generator system module
Table 17 โ€“ Parameter list for type 3A generator system module
53 7.4.3 Type 3B generator system module
Table 18 โ€“ Parameter list for type 3B generator system module
54 7.4.4 Type 4 generator system module
Figure 23 โ€“ Block diagram for type 3B generator system module
55 7.4.5 Reference frame rotation module
Figure 24 โ€“ Block diagram for type 4 generator system module
Table 19 โ€“ Parameter list for type 4 generator system module
Table 20 โ€“ Parameter list for reference frame rotation module
56 7.5 Electrical systems modules
7.5.1 Electrical systems gamma module
Figure 25 โ€“ Block diagram for the reference frame rotation module
Table 21 โ€“ Parameter list for electrical systems gamma module
57 7.5.2 Other electrical systems modules
7.6 Pitch control modules
7.6.1 Pitch control power module
Figure 26 โ€“ Single line diagram for electrical systems gamma module
Table 22 โ€“ Parameter list for pitch control power module
58 7.6.2 Pitch angle control module
Figure 27 โ€“ Block diagram for pitch control power module
Table 23 โ€“ Parameter list for pitch angle control module
59 7.7 Generator and converter control modules
7.7.1 Rotor resistance control module
Figure 28 โ€“ Block diagram for pitch angle control module
Table 24 โ€“ Parameter list for rotor resistance control module
60 7.7.2 P control module type 3
Figure 29 โ€“ Block diagram for rotor resistance control module
Table 25 โ€“ Parameter list for P control module type 3
62 Figure 30 โ€“ Block diagram for type 3 P control module
63 7.7.3 P control module type 4A
Figure 31 โ€“ Block diagram for type 3 torque PI
Table 26 โ€“ Parameter list for P control module type 4A
64 7.7.4 P control module type 4B
Figure 32 โ€“ Block diagram for type 4A P control module
Table 27 โ€“ Parameter list for P control module type 4B
65 7.7.5 Q control module
Figure 33 โ€“ Block diagram for type 4B P control module
Table 28 โ€“ General WT Q control modes MqG
Table 29 โ€“ Reactive current injection for each FRT Q control modes MqFRT
66 Table 30 โ€“ Parameter list for Q control module
67 Figure 34 โ€“ Block diagram for Q control module
68 7.7.6 Current limitation module
Table 31 โ€“ Description of FFRT flag values
Table 32 โ€“ Parameter list for current limiter module
69 7.7.7 Constant Q limitation module
Figure 35 โ€“ Block diagram for current limiter
Table 33 โ€“ Parameter list for constant Q limitation module
70 7.7.8 QP and QU limitation module
Figure 36 โ€“ Block diagram for constant Q limitation module
Figure 37 โ€“ Block diagram for QP and QU limitation module
Table 34 โ€“ Parameter list for QP and QU limitation module
71 7.8 Grid interfacing modules
7.8.1 Grid protection module
Table 35 โ€“ Parameter list for grid protection module
72 7.8.2 Grid measurement module
Figure 38 โ€“ Block diagram for grid protection system
Table 36 โ€“ Parameter list for grid measurement module
73 7.9 Wind power plant control modules
7.9.1 WP P control module
Figure 39 โ€“ Block diagram for u-f measurement
Table 37 โ€“ Parameter list for power/frequency control module
74 7.9.2 WP Q control module
Figure 40 โ€“ Block diagram for WP power/frequency control module
Table 38 โ€“ Parameter list for reactive power/voltage control module
75 Figure 41 โ€“ Block diagram for WP reactive power/voltage control module
76 7.10 Communication modules
7.10.1 General
7.10.2 Communication delay module
7.10.3 Linear communication module
Figure 42 โ€“ Block diagram for communication delay module
Table 39 โ€“ Parameter list for communication delay module
Table 40 โ€“ Parameter list for linear communication module
77 7.11 Electrical components modules
7.11.1 Line module
7.11.2 Transformer module
7.11.3 Other electrical components modules
Figure 43 โ€“ Block diagram for linear communication modulefor an example with N communication variables
78 Annex A (informative)Estimation of parameters for single branchpower collection system model
A.1 General
A.2 Description of method
A.2.1 General
A.2.2 Lines aggregation
79 A.2.3 Wind turbine transformers aggregation
80 A.3 Numerical example
Figure A.1 โ€“ WP power collection system example
81 Table A.1 โ€“ Lines parameters and aggregation calculations.The data is in per-units using WP base values
Table A.2 โ€“ Transformers parameters
82 Table A.3 โ€“ Estimated parameters for the single branch collection system model in 6.4.3
83 Annex B (informative)Two-dimensional aerodynamic model
B.1 Objective
B.2 Wind speed input model
Figure B.1 โ€“ Turbine aerodynamics model proposed by Fortmann (2014)
84 Table B.1 โ€“ Lookup table specifying the function โˆ‚pฯ‰(ฮฝ0)
Table B.2 โ€“ Parameter list for the wind speed input model
85 B.3 Parameters for power input module
86 Annex C (informative)Implementation of generator systems modules with external impedance
Figure C.1 โ€“ Type 3A generator system module with parallel reactance
87 Figure C.2 โ€“ Type 3B generator system module with parallel reactance
88 Figure C.3 โ€“ Type 4 generator system module with parallel reactance
89 Annex D (normative)Block symbol library
D.1 General
D.2 Switch
D.3 Time step delay
Figure D.1 โ€“ Block symbol for switch with a) a variable flag input and b) a constant mode
Figure D.2 โ€“ Block symbol for single integration time step delay
90 D.4 Stand-alone ramp rate limiter
D.5 First order filter
Figure D.3 โ€“ Block symbol for stand-alone ramp rate limiter
Figure D.4 โ€“ Block diagram for implementation of the stand-alone ramp rate limiter
Figure D.5 โ€“ Block symbol for first order filter with absolute limits,rate limits and freeze flag
91 D.6 Lookup table
D.7 Comparator
Figure D.6 โ€“ Block diagram for implementation of the first order filterwith absolute limits, rate limits and freeze state
Figure D.7 โ€“ Block diagram for implementation of the freeze state without filter (T = 0)
Figure D.8 โ€“ Block symbol for lookup table
92 D.8 Timer
Figure D.9 โ€“ Block symbols for comparators
Figure D.10 โ€“ Block symbol for timer
Figure D.11 โ€“ Function of timer
93 D.9 Anti windup integrator
D.10 Integrator with reset
Figure D.12 โ€“ Block symbol for anti windup integrator
Figure D.13 โ€“ Block diagram for implementation of anti windup integrator
Figure D.14 โ€“ Block symbol for integrator with reset
94 D.11 First order filter with limitation detection
D.12 Rising edge detection
Figure D.15 โ€“ Block symbol for first order filter with limitation detection
Figure D.16 โ€“ Block diagram for implementation of first order filterwith limitation detection
Figure D.17 โ€“ Block symbol rising edge detection
95 D.13 Falling edge detection
D.14 Delay flag
Figure D.18 โ€“ Block diagram for rising edge detection
Figure D.19 โ€“ Block symbol falling edge detection
Figure D.20 โ€“ Block diagram for falling edge detection
Figure D.21 โ€“ Block symbol for delay flag
96 D.15 Variable delay flag
Figure D.22 โ€“ Block diagram for implementation of delay flag
Figure D.23 โ€“ Block symbol for delay flag
97 D.16 Dead band
D.17 Circuit breaker
Figure D.24 โ€“ Block diagram for implementation of variable delay flag
Figure D.25 โ€“ Block symbol dead band
Figure D.26 โ€“ Block symbol for circuit breaker
98 Bibliography
BS EN IEC 61400-27-1:2020
$215.11