Shopping Cart

No products in the cart.

BSI 23/30482667 DC 2023

$45.21

BS EN IEC 62232/AMD1 Amendment 1 – Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure

Published By Publication Date Number of Pages
BSI 2023 331
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

PDF Catalog

PDF Pages PDF Title
1 30482667-NC.pdf
3 106_626e_CDV.pdf
15 FOREWORD
17 INTRODUCTION
18 1 Scope
19 2 Normative references
20 3 Terms and definitions
34 4 Symbols and abbreviated terms
4.1 Physical quantities
35 4.2 Constants
4.3 Abbreviated terms
39 5 How to use this document
5.1 Quick start guide
41 5.2 RF evaluation purpose categories
5.3 Implementation case studies
6 Evaluation processes for product compliance, product installation compliance and in-situ RF exposure assessments
6.1 Evaluation process for product compliance
6.1.1 General
6.1.2 Establishing compliance boundaries
42 6.1.3 Iso-surface compliance boundary definition
6.1.4 Simple compliance boundaries
44 6.1.5 Methods for establishing the compliance boundary
6.1.5.1 General
6.1.5.2 Establishing compliance boundary using RF field strength or power density measurements
45 6.1.5.3 Establishing compliance boundary using SAR measurements
6.1.5.4 Establishing compliance boundary using cylindrical and spherical formulas
46 6.1.5.5 Establishing compliance boundary using full wave analysis
6.1.5.6 Establishing compliance boundary using SAR estimation formulas
6.1.5.7 Establishing the compliance boundary of massive MIMO or beam steering antennas
47 6.1.5.8 Establishing compliance boundaries for parabolic dish antennas
48 6.1.6 Uncertainty
6.1.7 Reporting for product compliance
49 6.2 Evaluation process used for product installation compliance
6.2.1 General
6.2.2 General evaluation procedure for product installations
51 6.2.3 Product installation compliance based on the actual maximum transmitted power or EIRP
6.2.3.1 General requirements
6.2.3.2 Detailed process
6.2.3.2.1 General
6.2.3.2.2 Phase 1 – before putting the BS into operation or when any significant changes are made to the configured parameters of the BS
53 6.2.3.2.3 Phase 2 – when the BS is in operation
54 6.2.4 Product installation data collection
55 6.2.5 Simplified product installation evaluation process
57 6.2.6 Assessment area selection
59 6.2.7 Measurements
6.2.7.1 General
6.2.7.2 General TER measurements
60 6.2.7.3 Comprehensive product ER measurement
6.2.7.4 Exposure contribution of ambient sources
6.2.8 Computations
61 6.2.9 Uncertainty
6.2.10 Reporting for product installation compliance
62 6.3 In-situ RF exposure evaluation or assessment process
6.3.1 General
63 6.3.2 In-situ measurement process
64 6.3.3 Site analysis
6.3.4 Case A evaluation
6.3.5 Case B evaluation
6.3.5.1 Measurement protocol
65 6.3.5.2 Extrapolation of the configured maximum or actual maximum RF exposure
6.3.6 Uncertainty
6.3.7 Reporting
66 6.4 Averaging procedures
6.4.1 Spatial averaging
6.4.2 Time averaging
7 Determining the evaluation method
7.1 Overview
7.2 Process to determine the evaluation method
7.2.1 General
67 7.2.2 Establishing the evaluation points in relation to the source-environment plane
7.2.2.1 General
7.2.2.2 Source-environment plane definition
68 7.2.2.3 Definitions of source regions
7.2.2.4 Definitions of environment regions
69 7.2.2.5 Establish where evaluation points are on the source-environment plane
7.2.3 Exposure metric selection
70 8 Evaluation methods
8.1 General
8.2 Measurement methods
8.2.1 General
71 8.2.2 RF field strength and power density measurements
8.2.3 SAR measurements
72 8.3 Computation methods
74 8.4 Methods for assessment based on actual maximum approach
8.4.1 General requirements
8.4.2 Actual transmitted power or EIRP monitoring
75 8.4.3 Actual transmitted power or EIRP control
76 8.5 Methods for the assessment of RF exposure to multiple sources
77 8.6 Methods for establishing the BS transmitted power or EIRP
78 9 Uncertainty
10 Reporting
10.1 General requirements
10.2 Report format
80 10.3 Opinions and interpretations
81 Annex A (informative) Source-environment plane and guidance on the evaluation method selection
A.1 Guidance on the source-environment plane
A.1.1 General
A.1.2 Source-environment plane example
82 A.1.3 Source regions
A.1.3.1 General
A.1.3.2 Source definition and antenna geometry
86 A.1.3.3 Boundary between source regions for BS antennas with small elements, e.g. dipoles/slots/loops
A.1.3.3.1 Boundary between source region I and source region II
87 A.1.3.3.2 Boundary between source region II and source region III for maximum antenna dimension L ≥ 2,5 λ and elements in a linear configuration
88 A.1.3.4 Source regions for equiphase radiating aperture (e.g. parabolic dish) antennas
A.2 Select between computation or measurement approaches
89 A.3 Select measurement method
A.3.1 Selection stages
A.3.2 Selecting between RF field strength, power density and SAR measurement approaches
90 A.3.3 Selecting between broadband and frequency selective measurement
91 A.3.4 Selecting RF field strength measurement procedures
92 A.4 Select computation method
93 A.5 Additional considerations
A.5.1 Simplicity
A.5.2 Evaluation method ranking
A.5.3 Applying multiple methods for RF exposure evaluation
94 Annex B (normative) Evaluation methods
B.1 Overview
B.2 General
B.2.1 Coordinate systems and reference points
95 B.2.2 Variables
96 B.3 RF exposure evaluation principles
B.3.1 Simple calculation of RF field strength and power density
B.3.1.1 Mast mounted BS
98 B.3.1.2 Impact of reflective ground plane
B.3.1.3 Simple calculations with massive MIMO antennas
99 B.3.1.4 BS installed underground
B.3.2 Measurement of RF field strength and power density
101 B.3.3 Spatial averaging
B.3.3.1 General
102 B.3.3.2 Spatial averaging scheme
103 B.3.3.3 Spatial averaging formulas
104 B.3.3.4 Averaging around the spatial-peak field strength point
B.3.4 Time averaging
B.3.4.1 Applicability of time averaging
B.3.4.2 Time averaging measurement method
105 B.3.4.3 Guidance on addressing time variation of signals in measurement
B.3.5 Comparing measured and computed values
106 B.3.6 Personal RF monitors
B.4 RF field strength and power density measurements
B.4.1 Applicability of RF field strength and power density measurements
B.4.2 In-situ RF exposure measurements
B.4.2.1 General requirements
108 B.4.2.2 In-situ measurement equipment requirements
109 B.4.2.3 Broadband in-situ measurements
B.4.2.3.1 Applicability of broadband in-situ measurements
B.4.2.3.2 Broadband in-situ measurement method
110 B.4.2.3.3 Interpreting measurements over multiple frequency bands
B.4.2.3.3.1 Flat frequency response probe
B.4.2.3.3.2 Shaped frequency response probe
B.4.2.4 Frequency selective in-situ measurements
B.4.2.4.1 Applicability of frequency selective in-situ measurements
B.4.2.4.2 Frequency selective in-situ measurement method
111 B.4.2.5 In-situ measurement procedures
B.4.2.5.1 Determining the RF field strength or power density at fixed evaluation points of interest
B.4.2.5.2 Sweeping a volume to determine a RF field strength or power density value of interest and/or its location
112 B.4.2.5.3 In-situ measurements using tripod-supported instrument/antenna
B.4.2.5.4 In-situ measurements with emulated BS load profiles
B.4.2.5.4.1 General
113 B.4.2.5.4.2 Measurement with high BS load profile
114 B.4.2.6 Guidance on determining ambient fields
B.4.2.6.1 Overview
B.4.2.6.2 Ambient radio source identification
B.4.2.6.3 Selecting ambient field evaluation locationspoints
B.4.2.6.3.1 Collocated sources
B.4.2.6.3.2 Remote sources
115 B.4.2.6.3.3 Description
B.4.2.6.4 Proof of non-collocated source evaluation location point selection criteria
B.4.2.6.4.1 Principles
B.4.2.6.4.2 Establish criteria for separation of source evaluation locations points considering distance to radio source
117 B.4.2.6.4.3 Establish criteria for separation of source evaluation locations points considering distance to radio source
B.4.3 Laboratory based RF field strength and power density measurements
B.4.3.1 General
118 B.4.3.2 Requirements
B.4.3.2.1 General requirements
B.4.3.2.2 EUT configuration for RF field strength and power density measurements
B.4.3.2.3 Measurement requirements
119 B.4.3.3 Methods based on field reconstruction at the evaluation points
B.4.3.3.1 General
120 B.4.3.3.2 Measurement equipment and test environment
B.4.3.3.2.1 General description
121 B.4.3.3.2.2 Positioning, orientation, and sampling requirements of the scanning equipment
122 B.4.3.3.2.3 Measurement probe
B.4.3.3.2.4 Supporting structure of the EUT
B.4.3.3.2.5 Test site
123 B.4.3.3.3 Measurement protocol
124 B.4.3.3.4 Post-processing
B.4.3.3.4.1 General
B.4.3.3.4.2 Determining electromagnetic field values outside or inside the scanned surface
B.4.3.3.4.3 Scaling measurements to a given input power
B.4.3.4 Measurements based on direct measurements at the evaluation points
B.4.3.4.1 General
125 B.4.3.4.2 Measurement equipment and test environment
B.4.3.4.2.1 General description
126 B.4.3.4.2.2 Scanning equipment
B.4.3.4.2.3 Measurement equipment
B.4.3.4.2.4 Supporting structure for the EUT
127 B.4.3.4.2.5 Test site
B.4.3.4.3 Measurement protocol
B.4.3.4.4 Post-processing
B.4.3.5 System performance check
128 B.4.4 RF field strength and power density measurement uncertainty
B.4.4.1 In-situ RF measurement uncertainty
130 B.4.4.2 Laboratory measurement uncertainty
B.4.4.2.1 Uncertainty for the surface scanning method
131 B.4.4.2.2 Uncertainty for surface or volume scans
132 B.5 SAR measurements
B.5.1 Overview of SAR measurements
133 B.5.2 SAR measurement requirements
B.5.2.1 General requirements
B.5.2.2 Phantom selection
B.5.2.2.1 General
134 B.5.2.2.2 EUT configuration for SAR measurement
B.5.2.2.3 SAR measurement requirements
135 B.5.3 SAR measurement description
B.5.3.1 General method
136 B.5.3.2 System check and system validation
137 B.5.3.3 Maximum peak spatial-average psSAR measurement description
139 B.5.3.4 Whole-body wbSAR measurement description
140 B.5.4 SAR measurement uncertainty
143 B.6 Basic computation methods
B.6.1 General
B.6.2 Basic computation formulas for RF field strength or power density evaluation
B.6.2.1 Overview of spherical and cylindrical formulas
144 B.6.2.2 General guidelines
145 B.6.2.3 Zone boundaries
146 B.6.2.4 Adjusted spherical formulas
B.6.2.5 Cylindrical formulas
B.6.2.5.1 General
147 B.6.2.5.2 Cylindrical estimation formulas
B.6.2.5.2.1 Spatial-average cylindrical formulas
148 B.6.2.5.2.2 Spatial-peak cylindrical formulas
B.6.2.6 Validation of spherical and cylindrical formulas
B.6.2.6.1 General
B.6.2.6.2 Validation of spherical formulas
149 B.6.2.6.3 Validation of cylindrical formulas
B.6.3 Basic whole-body wbSAR and peak spatial-average psSAR evaluation formulas
B.6.3.1 Applicability
150 B.6.3.2 SAR estimation formulas applicable to the front (main beam) direction
153 B.6.3.3 SAR estimation formulas applicable to the axial and back directions
B.6.3.4 Using the SAR estimation formulas
154 B.6.3.5 Input parameters for SAR estimation formulas
B.6.3.6 SAR estimation formulas uncertainty
B.6.3.7 Verification of SAR estimation formulas
155 B.6.4 Basic compliance boundary assessment method for BS using parabolic dish antennas
B.6.4.1 General
156 B.6.4.2 Compliance boundary of a dish antenna
157 B.6.5 Basic compliance boundary assessment method for intentionally radiating cables
159 B.7 Advanced computation methods
B.7.1 General
B.7.2 Synthetic model and ray tracing algorithms
B.7.2.1 Applicability of synthetic model and ray tracing algorithms
160 B.7.2.2 Input requirements for synthetic model and ray tracing algorithms
161 B.7.2.3 Description of synthetic model and ray tracing algorithms
162 B.7.2.4 Synthetic model and ray tracing uncertainty parameters
164 B.7.2.5 Validation of synthetic model and ray tracing algorithms
166 B.7.3 Full wave RF exposure computation
B.7.3.1 Full wave RF field strength / power density computation applicability
B.7.3.2 Full wave RF field strength / power density computation requirements
167 B.7.3.3 Full wave RF field strength / power density computation description
B.7.3.4 Implementation of full wave field evaluation
B.7.3.4.1 Method of moments (MoM)
168 B.7.3.4.2 Finite difference time domain (FDTD)
169 B.7.3.4.3 Finite element method (FEM)
170 B.7.3.5 Full wave RF field strength / power density computation uncertainty
171 B.7.3.6 Validation of full wave field analyses
B.7.3.6.1 General
B.7.3.6.2 Validation 1: Antenna with dipole radiators
173 B.7.3.6.3 Validation 2: Antenna with slot elements
174 B.7.3.6.4 Validation 3: Dipole radiators at 24 GHz
B.7.4 Full wave SAR computation
B.7.4.1 Applicability of full wave methods for SAR evaluation
B.7.4.2 Full wave SAR computation methods requirements
B.7.4.3 Full wave SAR computation methods description
175 B.7.4.4 Implementation of full wave SAR evaluation
B.7.4.4.1 General
B.7.4.4.2 Method of moments (MoM) and hybrid methods
176 B.7.4.4.3 Finite difference time domain (FDTD)
B.7.4.4.4 Finite element method (FEM)
B.7.4.5 Full wave SAR computation uncertainty
178 B.7.4.6 Validation of SAR analysis
179 B.8 Extrapolation from the evaluated values to the maximum or actual values
B.8.1 Extrapolation method
181 B.8.2 Extrapolation to maximum in-situ RF field strength or power density using broadband measurements
B.8.3 Extrapolation to maximum in-situ RF field strength / power density using frequency or code selective measurements
182 B.8.4 Influence of traffic in real operating network
183 B.8.5 Extrapolation for massive MIMO and beamforming BS
B.8.5.1 General
184 B.8.5.2 Calculation of the extrapolation factor FextBeam
185 B.8.5.3 Estimation of the extrapolation factor FextBeam
B.8.6 Maximum exposure extrapolation with dynamic spectrum sharing (DSS)
186 B.9 Guidance for implementing the actual maximum approach
B.9.1 BS actual EIRP evaluation assumptions
187 B.9.2 Technology duty-cycle factor description
188 B.9.3 CDF evaluation using modelling studies
B.9.3.1 Guiding principles
189 B.9.3.2 Simulation model parameters
190 B.9.4 CDF evaluation using measurement studies on operational BS sites
B.9.4.1 Guiding principles
B.9.4.2 Measurement campaign parameters
191 B.9.4.3 Experiment process
B.9.5 Actual transmitted power or EIRP monitoring counters
192 B.9.6 Configurations with multiple transmitters
193 B.10 Transmitted power or EIRP evaluation
B.10.1 General
B.10.2 Measurement of the transmitted power in conducted mode
194 B.10.3 Measurement of the transmitted power in OTA conditions
B.10.4 Measurement of the EIRP in OTA and laboratory conditions
195 B.10.5 Measurement of the EIRP in OTA and in-situ conditions
196 Annex C (informative) Guidelines for the validation of power or EIRP control features and monitoring counter(s) related to the actual maximum approach
C.1 Overview
C.2 Guidelines for validating control feature(s) and monitoring counters
197 C.3 Validation of power or EIRP monitoring counter in laboratory conditions
C.3.1 Validation of power or EIRP monitoring counter in conducted mode – test procedure
C.3.1.1 General
C.3.1.2 Step 1 – Counter validation at the rated maximum power and determination of the reference power
C.3.1.3 Step 2 – Counter validation for multiple configured maximum power values – power linearity
198 C.3.1.4 Step 3 – Counter validation for multiple load levels – Time linearity
C.3.1.5 Step 4 – Conclusion of the counter validation
199 C.3.2 Validation of power or EIRP monitoring counter in OTA mode – test procedure
C.3.2.1 General
C.3.2.2 Step 1 – Counter validation at rated maximum power and determination of the reference power
200 C.3.2.3 Step 2 – Counter validation for multiple configured maximum power values – power or EIRP linearity
201 C.3.2.4 Step 3 – Counter validation for multiple load levels – time linearity
202 C.3.2.5 Step 4 – Conclusion of the validation
C.3.3 Validation of control feature(s) in laboratory conditions
C.3.3.1 General
203 C.3.3.2 OTA test procedure
C.3.3.2.1 General
C.3.3.2.2 Step 1 – Baseline assessment without the control feature activated
204 C.3.3.2.3 Step 2 – Power or EIRP control feature activation
C.3.3.2.4 Step 3 – Validation with power or EIRP control feature activated
C.3.3.2.5 Step 4 – Control feature validation at additional configurations (power reduction factors, actual averaging times and traffic patterns)
C.3.3.3 Validation of proper operation
205 C.3.4 Validation of control features using in-situ measurements
C.3.4.1 General
206 C.3.4.2 Test procedure
C.3.4.2.1 General
C.3.4.2.2 Step 1 – Instantaneous and time-averaged EMF levels at configured maximum power and intermediate levels
C.3.4.2.3 Step 2 – Power or EIRP control activation
207 C.3.4.2.4 Step 3 – Instantaneous and time-averaged EMF levels with control activated at configured maximum power and intermediate load levels
C.3.4.2.5 Step 4 – Instantaneous and time-averaged EMF levels with power control activated with considerations for power threshold, actual averaging times and traffic patterns
C.3.4.2.6 Step 5 – Validation of features that support power or EIRP control per beam or per cell segment
C.3.4.3 Validation of proper operation
C.4 Validation test report
208 C.5 Case studies
C.5.1 Case study A – In-situ validation
C.5.1.1 Overview
C.5.1.2 Pre-test setup and preparation
209 C.5.1.3 Test setup
210 C.5.1.4 Results
212 C.5.1.5 Summary
C.5.2 Case study B – In-situ validation
C.5.2.1 Overview
C.5.2.2 Pre-test setup and preparation
C.5.2.2.1 Method
213 C.5.2.2.2 EMF measurement equipment
C.5.2.2.3 5G NR
C.5.2.3 Test setup
214 C.5.2.4 Results
C.5.2.5 Summary
C.5.3 Case study C – In-situ validation
C.5.3.1 Overview
215 C.5.3.2 Pre-test setup and preparation
217 C.5.3.3 Test protocol
218 C.5.3.4 Test results
219 C.5.3.5 Summary and lessons learned
220 Annex D (informative) Rationale supporting simplified product installation criteria
D.1 General
D.2 Class E2
221 D.3 Class E10
222 D.4 Class E100
224 D.5 Class E+
225 D.6 Simplified formulas for millimetre-wave antennas using massive MIMO or beam steering
227 Annex E (informative) Technology-specific exposure evaluation guidance
E.1 Overview to guidance on specific technologies
E.2 Summary of technology-specific information
228 E.3 Guidance on spectrum analyser settings
E.3.1 Overview of spectrum analyser settings
229 E.3.2 Detection algorithms
E.3.3 Resolution bandwidth and channel power processing
E.3.3.1 Measurement at a single frequency
231 E.3.3.2 Measurement over a bandwidth and channel power processing
232 E.3.4 Integration per service
E.3.4.1 General
E.3.4.2 Example of settings
E.4 Stable transmitted power signals
E.4.1 TDMA/FDMA technology
233 E.4.2 WCDMA/UMTS technology
234 E.4.3 OFDM technology
E.5 WCDMA measurement and calibration using a code domain analyser
E.5.1 WCDMA measurements – General
E.5.2 WCDMA decoder characteristics
235 E.5.3 Calibration
E.5.3.1 Signal types used for calibration
236 E.5.3.2 Source (generator) calibration
E.5.3.3 WCDMA decoder calibration
237 E.6 Wi-Fi measurements
E.6.1 General
E.6.2 Integration time for reproducible measurements
238 E.6.3 Channel occupation
239 E.6.4 Some considerations
E.6.5 Measurement configuration and steps
240 E.6.6 Influence of the application layers
E.6.7 Power control
E.7 LTE measurements
E.7.1 Overview
E.7.2 LTE transmission modes
241 E.7.3 LTE-FDD frame structure
242 E.7.4 LTE-TDD frame structure
244 E.7.5 Maximum LTE exposure evaluation
E.7.5.1 General
E.7.5.2 Method using a dedicated decoder
246 E.7.5.3 Method using a basic spectrum analyser
249 E.7.5.4 Method for beamforming antennas
E.7.6 Instantaneous LTE exposure evaluation
250 E.7.7 MIMO multiplexing of LTE BS
E.8 NR BS measurements
E.8.1 General
E.8.2 Maximum NR exposure evaluation
E.8.2.1 NR signal extrapolation based on SSB
E.8.2.1.1 General
251 E.8.2.1.2 Method using a dedicated NR decoder
252 E.8.2.1.3 Method using a spectrum analyser
E.8.2.1.3.1 SSB mapping
254 E.8.2.1.3.2 SSB gating
257 E.8.2.1.4 Method for beamforming antennas
258 E.8.2.2 NR exposure extrapolation based on CSI-RS
E.8.2.2.1 Domain of application
E.8.2.2.2 CSI-RS configuration of the BS
259 E.8.2.2.3 Measurement method using a dedicated decoder
260 E.9 Establishing compliance boundaries using numerical simulations of MIMO array antennas emitting correlated waveforms
E.9.1 General
E.9.2 Field combining near base stations for correlated exposure with the purpose of establishing compliance boundaries
261 E.9.3 Numerical simulations of MIMO array antennas with densely packed columns
E.9.4 Numerical simulations of large MIMO array antennas
262 E.10 Massive MIMO antennas
E.10.1 Overview
E.10.2 Deterministic conservative approach
E.10.3 Statistical conservative approach
263 E.10.4 Example approaches
E.10.4.1 General
265 E.10.4.2 Deterministic conservative power density model
E.10.4.3 Long term time-average power density model
E.10.4.4 Statistical conservative power density model
E.10.4.4.1 Overview
266 E.10.4.4.2 Establishing the single user conservative power density
E.10.4.4.3 Determining horizontal gain modification factors
267 E.10.4.4.4 Determining N
268 E.10.4.4.5 Determining Ssta
E.10.4.5 Power density evaluation for LTE-TDD
E.10.4.5.1 Overview
269 E.10.4.5.2 Determining power density of traffic channel
E.10.4.5.2.1 Traffic channel power density distribution
270 E.10.4.5.2.2 Ratios of the three types of TS
E.10.4.5.2.3 Control channel power density distribution
E.10.4.5.2.4 Summary
271 E.10.4.5.3 Example of a massive MIMO antenna
273 E.10.4.6 Power density evaluation for NR BS
E.10.4.6.1 General
E.10.4.6.2 Determining power density of traffic channel
E.10.4.6.2.1 Traffic channel power density distribution
274 E.10.4.6.2.2 Control channel power density
E.10.4.6.2.3 Summary
E.10.4.6.3 Case study for power density evaluation for NR BS
277 E.10.4.7 Actual maximum transmitted power evaluation
279 Annex F (informative) Guidelines for the assessment of BS compliance with ICNIRP-2020 brief exposure limits
F.1 General
F.2 Brief exposure limits
281 F.3 Implications of brief exposure limits on signal modulation and TDD duty cycle
F.4 Implications of brief exposure limits on the actual maximum approach
285 Annex G (informative) Uncertainty
G.1 Background
G.2 Requirement to estimate uncertainty
G.3 How to estimate uncertainty
286 G.4 Guidance on uncertainty and assessment schemes
G.4.1 General
G.4.2 Overview of assessment schemes
287 G.4.3 Examples of assessment schemes
G.4.3.1 Examples of general assessment schemes
288 G.4.3.2 Example target uncertainty-based assessment scheme
G.4.3.2.1 Target uncertainty assessment scheme principles
289 G.4.3.2.2 Determining the target uncertainty
G.4.3.2.3 Assessment of compliance with an exposure limit
G.4.3.2.3.1 Overview
G.4.3.2.3.2 Method
290 G.4.4 Assessment schemes and compliance probabilities
G.4.4.1 Assessment scheme uncertainty and compliance probabilities overview
G.4.4.2 Monte Carlo simulation of target uncertainty-based assessment scheme
292 G.4.4.3 Compliance error probability simulation
G.5 Guidance on uncertainty
G.5.1 Overview
293 G.5.2 Measurement uncertainty and confidence levels
294 G.6 Applying uncertainty for compliance assessments
295 G.7 Example influence quantities for field measurements
G.7.1 General
G.7.2 Calibration uncertainty of measurement antenna or field probe
G.7.3 Frequency response of the measurement antenna or field probe
297 G.7.4 Isotropy of the measurement antenna or field probe
G.7.5 Frequency response of the spectrum analyser
G.7.6 Temperature response of a broadband field probe
298 G.7.7 Linearity deviation of a broadband field probe
G.7.8 Mismatch uncertainty
G.7.9 Deviation of the experimental source from numerical source
G.7.10 Meter fluctuation uncertainty for time-varying signals
299 G.7.11 Uncertainty due to power variation in the RF source
G.7.12 Uncertainty due to field gradients
G.7.12.1 General
G.7.12.2 Uncertainty due to field gradients when using dipoles
300 G.7.12.3 Uncertainty due to field gradients when using loop antennas
G.7.13 Mutual coupling between measurement antenna or isotropic probe and object
301 G.7.14 Uncertainty due to field scattering from the surveyor’s body
303 G.7.15 Measurement device
G.7.16 Fields out of measurement range
304 G.7.17 Noise
G.7.18 Integration time
G.7.19 Power chain
G.7.20 Positioning system
G.7.21 Matching between probe and the EUT
G.7.22 Drifts in output power of the EUT, probe, temperature, and humidity
G.7.23 Perturbation by the environment
305 G.8 Example influence quantities for RF field strength computations by ray tracing or full wave methods
G.8.1 General
G.8.2 System
G.8.2.1 Transmitted power
G.8.2.2 System losses
G.8.2.3 Antenna
306 G.8.2.4 Modelling of antenna structures and supports
G.8.3 Technique uncertainties
G.8.4 Environmental uncertainties
307 G.9 Influence quantities for SAR measurements
G.9.1 General
G.9.2 Post-processing
G.9.3 EUT holder
G.9.3.1 General
308 G.9.3.2 EUT holder perturbation uncertainty for specific types of EUTs: type A
G.9.3.3 EUT holder perturbation uncertainty for a specific EUT: type B
G.9.4 EUT positioning
G.9.4.1 General
309 G.9.4.2 Positioning uncertainty of a specific EUT in a specific holder
G.9.4.3 Positioning uncertainty of specific types of EUTs in a specific holder
G.9.5 Phantom shell uncertainty
G.9.6 SAR correction depending on target liquid permittivity and conductivity
G.9.7 Liquid permittivity and conductivity measurements
310 G.9.8 Liquid temperature
G.10 Influence quantities for SAR calculations
G.11 Spatial averaging
G.11.1 General
311 G.11.2 Small-scale fading variations
G.11.3 Error on the estimation of local average power density
G.11.3.1 Definition of the error on estimated average power density
G.11.3.2 Determination of significant statistical parameters
312 G.11.3.3 Estimation of the error on the estimation of local average power density
G.11.4 Characterization of environment statistical properties
313 G.11.5 Characterization of different spatial averaging schemes
G.11.5.1 General
317 G.11.5.2 Example of uncertainty assessment
G.12 Influence of human body on measurements of the electric RF field strength
G.12.1 Simulations of the influence of human body on measurements based on the method of moments (surface equivalence principle)
G.12.1.1 Background
G.12.1.2 Simulation parameters
318 G.12.1.3 Results of electrical probe simulations
319 G.12.2 Comparison with measurements
G.12.3 Conclusions
321 Annex H (informative) Guidance on comparing evaluated parameters with a limit value
H.1 Overview
H.2 Information recommended to compare evaluated value against limit value
H.3 Performing a limit comparison at a given confidence level
322 H.4 Performing a limit comparison using a process-based assessment scheme
Bibliography
BSI 23/30482667 DC 2023
$45.21