BSI 23/30482667 DC 2023
$45.21
BS EN IEC 62232/AMD1 Amendment 1 – Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure
Published By | Publication Date | Number of Pages |
BSI | 2023 | 331 |
PDF Catalog
PDF Pages | PDF Title |
---|---|
1 | 30482667-NC.pdf |
3 | 106_626e_CDV.pdf |
15 | FOREWORD |
17 | INTRODUCTION |
18 | 1 Scope |
19 | 2 Normative references |
20 | 3 Terms and definitions |
34 | 4 Symbols and abbreviated terms 4.1 Physical quantities |
35 | 4.2 Constants 4.3 Abbreviated terms |
39 | 5 How to use this document 5.1 Quick start guide |
41 | 5.2 RF evaluation purpose categories 5.3 Implementation case studies 6 Evaluation processes for product compliance, product installation compliance and in-situ RF exposure assessments 6.1 Evaluation process for product compliance 6.1.1 General 6.1.2 Establishing compliance boundaries |
42 | 6.1.3 Iso-surface compliance boundary definition 6.1.4 Simple compliance boundaries |
44 | 6.1.5 Methods for establishing the compliance boundary 6.1.5.1 General 6.1.5.2 Establishing compliance boundary using RF field strength or power density measurements |
45 | 6.1.5.3 Establishing compliance boundary using SAR measurements 6.1.5.4 Establishing compliance boundary using cylindrical and spherical formulas |
46 | 6.1.5.5 Establishing compliance boundary using full wave analysis 6.1.5.6 Establishing compliance boundary using SAR estimation formulas 6.1.5.7 Establishing the compliance boundary of massive MIMO or beam steering antennas |
47 | 6.1.5.8 Establishing compliance boundaries for parabolic dish antennas |
48 | 6.1.6 Uncertainty 6.1.7 Reporting for product compliance |
49 | 6.2 Evaluation process used for product installation compliance 6.2.1 General 6.2.2 General evaluation procedure for product installations |
51 | 6.2.3 Product installation compliance based on the actual maximum transmitted power or EIRP 6.2.3.1 General requirements 6.2.3.2 Detailed process 6.2.3.2.1 General 6.2.3.2.2 Phase 1 – before putting the BS into operation or when any significant changes are made to the configured parameters of the BS |
53 | 6.2.3.2.3 Phase 2 – when the BS is in operation |
54 | 6.2.4 Product installation data collection |
55 | 6.2.5 Simplified product installation evaluation process |
57 | 6.2.6 Assessment area selection |
59 | 6.2.7 Measurements 6.2.7.1 General 6.2.7.2 General TER measurements |
60 | 6.2.7.3 Comprehensive product ER measurement 6.2.7.4 Exposure contribution of ambient sources 6.2.8 Computations |
61 | 6.2.9 Uncertainty 6.2.10 Reporting for product installation compliance |
62 | 6.3 In-situ RF exposure evaluation or assessment process 6.3.1 General |
63 | 6.3.2 In-situ measurement process |
64 | 6.3.3 Site analysis 6.3.4 Case A evaluation 6.3.5 Case B evaluation 6.3.5.1 Measurement protocol |
65 | 6.3.5.2 Extrapolation of the configured maximum or actual maximum RF exposure 6.3.6 Uncertainty 6.3.7 Reporting |
66 | 6.4 Averaging procedures 6.4.1 Spatial averaging 6.4.2 Time averaging 7 Determining the evaluation method 7.1 Overview 7.2 Process to determine the evaluation method 7.2.1 General |
67 | 7.2.2 Establishing the evaluation points in relation to the source-environment plane 7.2.2.1 General 7.2.2.2 Source-environment plane definition |
68 | 7.2.2.3 Definitions of source regions 7.2.2.4 Definitions of environment regions |
69 | 7.2.2.5 Establish where evaluation points are on the source-environment plane 7.2.3 Exposure metric selection |
70 | 8 Evaluation methods 8.1 General 8.2 Measurement methods 8.2.1 General |
71 | 8.2.2 RF field strength and power density measurements 8.2.3 SAR measurements |
72 | 8.3 Computation methods |
74 | 8.4 Methods for assessment based on actual maximum approach 8.4.1 General requirements 8.4.2 Actual transmitted power or EIRP monitoring |
75 | 8.4.3 Actual transmitted power or EIRP control |
76 | 8.5 Methods for the assessment of RF exposure to multiple sources |
77 | 8.6 Methods for establishing the BS transmitted power or EIRP |
78 | 9 Uncertainty 10 Reporting 10.1 General requirements 10.2 Report format |
80 | 10.3 Opinions and interpretations |
81 | Annex A (informative) Source-environment plane and guidance on the evaluation method selection A.1 Guidance on the source-environment plane A.1.1 General A.1.2 Source-environment plane example |
82 | A.1.3 Source regions A.1.3.1 General A.1.3.2 Source definition and antenna geometry |
86 | A.1.3.3 Boundary between source regions for BS antennas with small elements, e.g. dipoles/slots/loops A.1.3.3.1 Boundary between source region I and source region II |
87 | A.1.3.3.2 Boundary between source region II and source region III for maximum antenna dimension L ≥ 2,5 λ and elements in a linear configuration |
88 | A.1.3.4 Source regions for equiphase radiating aperture (e.g. parabolic dish) antennas A.2 Select between computation or measurement approaches |
89 | A.3 Select measurement method A.3.1 Selection stages A.3.2 Selecting between RF field strength, power density and SAR measurement approaches |
90 | A.3.3 Selecting between broadband and frequency selective measurement |
91 | A.3.4 Selecting RF field strength measurement procedures |
92 | A.4 Select computation method |
93 | A.5 Additional considerations A.5.1 Simplicity A.5.2 Evaluation method ranking A.5.3 Applying multiple methods for RF exposure evaluation |
94 | Annex B (normative) Evaluation methods B.1 Overview B.2 General B.2.1 Coordinate systems and reference points |
95 | B.2.2 Variables |
96 | B.3 RF exposure evaluation principles B.3.1 Simple calculation of RF field strength and power density B.3.1.1 Mast mounted BS |
98 | B.3.1.2 Impact of reflective ground plane B.3.1.3 Simple calculations with massive MIMO antennas |
99 | B.3.1.4 BS installed underground B.3.2 Measurement of RF field strength and power density |
101 | B.3.3 Spatial averaging B.3.3.1 General |
102 | B.3.3.2 Spatial averaging scheme |
103 | B.3.3.3 Spatial averaging formulas |
104 | B.3.3.4 Averaging around the spatial-peak field strength point B.3.4 Time averaging B.3.4.1 Applicability of time averaging B.3.4.2 Time averaging measurement method |
105 | B.3.4.3 Guidance on addressing time variation of signals in measurement B.3.5 Comparing measured and computed values |
106 | B.3.6 Personal RF monitors B.4 RF field strength and power density measurements B.4.1 Applicability of RF field strength and power density measurements B.4.2 In-situ RF exposure measurements B.4.2.1 General requirements |
108 | B.4.2.2 In-situ measurement equipment requirements |
109 | B.4.2.3 Broadband in-situ measurements B.4.2.3.1 Applicability of broadband in-situ measurements B.4.2.3.2 Broadband in-situ measurement method |
110 | B.4.2.3.3 Interpreting measurements over multiple frequency bands B.4.2.3.3.1 Flat frequency response probe B.4.2.3.3.2 Shaped frequency response probe B.4.2.4 Frequency selective in-situ measurements B.4.2.4.1 Applicability of frequency selective in-situ measurements B.4.2.4.2 Frequency selective in-situ measurement method |
111 | B.4.2.5 In-situ measurement procedures B.4.2.5.1 Determining the RF field strength or power density at fixed evaluation points of interest B.4.2.5.2 Sweeping a volume to determine a RF field strength or power density value of interest and/or its location |
112 | B.4.2.5.3 In-situ measurements using tripod-supported instrument/antenna B.4.2.5.4 In-situ measurements with emulated BS load profiles B.4.2.5.4.1 General |
113 | B.4.2.5.4.2 Measurement with high BS load profile |
114 | B.4.2.6 Guidance on determining ambient fields B.4.2.6.1 Overview B.4.2.6.2 Ambient radio source identification B.4.2.6.3 Selecting ambient field evaluation locationspoints B.4.2.6.3.1 Collocated sources B.4.2.6.3.2 Remote sources |
115 | B.4.2.6.3.3 Description B.4.2.6.4 Proof of non-collocated source evaluation location point selection criteria B.4.2.6.4.1 Principles B.4.2.6.4.2 Establish criteria for separation of source evaluation locations points considering distance to radio source |
117 | B.4.2.6.4.3 Establish criteria for separation of source evaluation locations points considering distance to radio source B.4.3 Laboratory based RF field strength and power density measurements B.4.3.1 General |
118 | B.4.3.2 Requirements B.4.3.2.1 General requirements B.4.3.2.2 EUT configuration for RF field strength and power density measurements B.4.3.2.3 Measurement requirements |
119 | B.4.3.3 Methods based on field reconstruction at the evaluation points B.4.3.3.1 General |
120 | B.4.3.3.2 Measurement equipment and test environment B.4.3.3.2.1 General description |
121 | B.4.3.3.2.2 Positioning, orientation, and sampling requirements of the scanning equipment |
122 | B.4.3.3.2.3 Measurement probe B.4.3.3.2.4 Supporting structure of the EUT B.4.3.3.2.5 Test site |
123 | B.4.3.3.3 Measurement protocol |
124 | B.4.3.3.4 Post-processing B.4.3.3.4.1 General B.4.3.3.4.2 Determining electromagnetic field values outside or inside the scanned surface B.4.3.3.4.3 Scaling measurements to a given input power B.4.3.4 Measurements based on direct measurements at the evaluation points B.4.3.4.1 General |
125 | B.4.3.4.2 Measurement equipment and test environment B.4.3.4.2.1 General description |
126 | B.4.3.4.2.2 Scanning equipment B.4.3.4.2.3 Measurement equipment B.4.3.4.2.4 Supporting structure for the EUT |
127 | B.4.3.4.2.5 Test site B.4.3.4.3 Measurement protocol B.4.3.4.4 Post-processing B.4.3.5 System performance check |
128 | B.4.4 RF field strength and power density measurement uncertainty B.4.4.1 In-situ RF measurement uncertainty |
130 | B.4.4.2 Laboratory measurement uncertainty B.4.4.2.1 Uncertainty for the surface scanning method |
131 | B.4.4.2.2 Uncertainty for surface or volume scans |
132 | B.5 SAR measurements B.5.1 Overview of SAR measurements |
133 | B.5.2 SAR measurement requirements B.5.2.1 General requirements B.5.2.2 Phantom selection B.5.2.2.1 General |
134 | B.5.2.2.2 EUT configuration for SAR measurement B.5.2.2.3 SAR measurement requirements |
135 | B.5.3 SAR measurement description B.5.3.1 General method |
136 | B.5.3.2 System check and system validation |
137 | B.5.3.3 Maximum peak spatial-average psSAR measurement description |
139 | B.5.3.4 Whole-body wbSAR measurement description |
140 | B.5.4 SAR measurement uncertainty |
143 | B.6 Basic computation methods B.6.1 General B.6.2 Basic computation formulas for RF field strength or power density evaluation B.6.2.1 Overview of spherical and cylindrical formulas |
144 | B.6.2.2 General guidelines |
145 | B.6.2.3 Zone boundaries |
146 | B.6.2.4 Adjusted spherical formulas B.6.2.5 Cylindrical formulas B.6.2.5.1 General |
147 | B.6.2.5.2 Cylindrical estimation formulas B.6.2.5.2.1 Spatial-average cylindrical formulas |
148 | B.6.2.5.2.2 Spatial-peak cylindrical formulas B.6.2.6 Validation of spherical and cylindrical formulas B.6.2.6.1 General B.6.2.6.2 Validation of spherical formulas |
149 | B.6.2.6.3 Validation of cylindrical formulas B.6.3 Basic whole-body wbSAR and peak spatial-average psSAR evaluation formulas B.6.3.1 Applicability |
150 | B.6.3.2 SAR estimation formulas applicable to the front (main beam) direction |
153 | B.6.3.3 SAR estimation formulas applicable to the axial and back directions B.6.3.4 Using the SAR estimation formulas |
154 | B.6.3.5 Input parameters for SAR estimation formulas B.6.3.6 SAR estimation formulas uncertainty B.6.3.7 Verification of SAR estimation formulas |
155 | B.6.4 Basic compliance boundary assessment method for BS using parabolic dish antennas B.6.4.1 General |
156 | B.6.4.2 Compliance boundary of a dish antenna |
157 | B.6.5 Basic compliance boundary assessment method for intentionally radiating cables |
159 | B.7 Advanced computation methods B.7.1 General B.7.2 Synthetic model and ray tracing algorithms B.7.2.1 Applicability of synthetic model and ray tracing algorithms |
160 | B.7.2.2 Input requirements for synthetic model and ray tracing algorithms |
161 | B.7.2.3 Description of synthetic model and ray tracing algorithms |
162 | B.7.2.4 Synthetic model and ray tracing uncertainty parameters |
164 | B.7.2.5 Validation of synthetic model and ray tracing algorithms |
166 | B.7.3 Full wave RF exposure computation B.7.3.1 Full wave RF field strength / power density computation applicability B.7.3.2 Full wave RF field strength / power density computation requirements |
167 | B.7.3.3 Full wave RF field strength / power density computation description B.7.3.4 Implementation of full wave field evaluation B.7.3.4.1 Method of moments (MoM) |
168 | B.7.3.4.2 Finite difference time domain (FDTD) |
169 | B.7.3.4.3 Finite element method (FEM) |
170 | B.7.3.5 Full wave RF field strength / power density computation uncertainty |
171 | B.7.3.6 Validation of full wave field analyses B.7.3.6.1 General B.7.3.6.2 Validation 1: Antenna with dipole radiators |
173 | B.7.3.6.3 Validation 2: Antenna with slot elements |
174 | B.7.3.6.4 Validation 3: Dipole radiators at 24 GHz B.7.4 Full wave SAR computation B.7.4.1 Applicability of full wave methods for SAR evaluation B.7.4.2 Full wave SAR computation methods requirements B.7.4.3 Full wave SAR computation methods description |
175 | B.7.4.4 Implementation of full wave SAR evaluation B.7.4.4.1 General B.7.4.4.2 Method of moments (MoM) and hybrid methods |
176 | B.7.4.4.3 Finite difference time domain (FDTD) B.7.4.4.4 Finite element method (FEM) B.7.4.5 Full wave SAR computation uncertainty |
178 | B.7.4.6 Validation of SAR analysis |
179 | B.8 Extrapolation from the evaluated values to the maximum or actual values B.8.1 Extrapolation method |
181 | B.8.2 Extrapolation to maximum in-situ RF field strength or power density using broadband measurements B.8.3 Extrapolation to maximum in-situ RF field strength / power density using frequency or code selective measurements |
182 | B.8.4 Influence of traffic in real operating network |
183 | B.8.5 Extrapolation for massive MIMO and beamforming BS B.8.5.1 General |
184 | B.8.5.2 Calculation of the extrapolation factor FextBeam |
185 | B.8.5.3 Estimation of the extrapolation factor FextBeam B.8.6 Maximum exposure extrapolation with dynamic spectrum sharing (DSS) |
186 | B.9 Guidance for implementing the actual maximum approach B.9.1 BS actual EIRP evaluation assumptions |
187 | B.9.2 Technology duty-cycle factor description |
188 | B.9.3 CDF evaluation using modelling studies B.9.3.1 Guiding principles |
189 | B.9.3.2 Simulation model parameters |
190 | B.9.4 CDF evaluation using measurement studies on operational BS sites B.9.4.1 Guiding principles B.9.4.2 Measurement campaign parameters |
191 | B.9.4.3 Experiment process B.9.5 Actual transmitted power or EIRP monitoring counters |
192 | B.9.6 Configurations with multiple transmitters |
193 | B.10 Transmitted power or EIRP evaluation B.10.1 General B.10.2 Measurement of the transmitted power in conducted mode |
194 | B.10.3 Measurement of the transmitted power in OTA conditions B.10.4 Measurement of the EIRP in OTA and laboratory conditions |
195 | B.10.5 Measurement of the EIRP in OTA and in-situ conditions |
196 | Annex C (informative) Guidelines for the validation of power or EIRP control features and monitoring counter(s) related to the actual maximum approach C.1 Overview C.2 Guidelines for validating control feature(s) and monitoring counters |
197 | C.3 Validation of power or EIRP monitoring counter in laboratory conditions C.3.1 Validation of power or EIRP monitoring counter in conducted mode – test procedure C.3.1.1 General C.3.1.2 Step 1 – Counter validation at the rated maximum power and determination of the reference power C.3.1.3 Step 2 – Counter validation for multiple configured maximum power values – power linearity |
198 | C.3.1.4 Step 3 – Counter validation for multiple load levels – Time linearity C.3.1.5 Step 4 – Conclusion of the counter validation |
199 | C.3.2 Validation of power or EIRP monitoring counter in OTA mode – test procedure C.3.2.1 General C.3.2.2 Step 1 – Counter validation at rated maximum power and determination of the reference power |
200 | C.3.2.3 Step 2 – Counter validation for multiple configured maximum power values – power or EIRP linearity |
201 | C.3.2.4 Step 3 – Counter validation for multiple load levels – time linearity |
202 | C.3.2.5 Step 4 – Conclusion of the validation C.3.3 Validation of control feature(s) in laboratory conditions C.3.3.1 General |
203 | C.3.3.2 OTA test procedure C.3.3.2.1 General C.3.3.2.2 Step 1 – Baseline assessment without the control feature activated |
204 | C.3.3.2.3 Step 2 – Power or EIRP control feature activation C.3.3.2.4 Step 3 – Validation with power or EIRP control feature activated C.3.3.2.5 Step 4 – Control feature validation at additional configurations (power reduction factors, actual averaging times and traffic patterns) C.3.3.3 Validation of proper operation |
205 | C.3.4 Validation of control features using in-situ measurements C.3.4.1 General |
206 | C.3.4.2 Test procedure C.3.4.2.1 General C.3.4.2.2 Step 1 – Instantaneous and time-averaged EMF levels at configured maximum power and intermediate levels C.3.4.2.3 Step 2 – Power or EIRP control activation |
207 | C.3.4.2.4 Step 3 – Instantaneous and time-averaged EMF levels with control activated at configured maximum power and intermediate load levels C.3.4.2.5 Step 4 – Instantaneous and time-averaged EMF levels with power control activated with considerations for power threshold, actual averaging times and traffic patterns C.3.4.2.6 Step 5 – Validation of features that support power or EIRP control per beam or per cell segment C.3.4.3 Validation of proper operation C.4 Validation test report |
208 | C.5 Case studies C.5.1 Case study A – In-situ validation C.5.1.1 Overview C.5.1.2 Pre-test setup and preparation |
209 | C.5.1.3 Test setup |
210 | C.5.1.4 Results |
212 | C.5.1.5 Summary C.5.2 Case study B – In-situ validation C.5.2.1 Overview C.5.2.2 Pre-test setup and preparation C.5.2.2.1 Method |
213 | C.5.2.2.2 EMF measurement equipment C.5.2.2.3 5G NR C.5.2.3 Test setup |
214 | C.5.2.4 Results C.5.2.5 Summary C.5.3 Case study C – In-situ validation C.5.3.1 Overview |
215 | C.5.3.2 Pre-test setup and preparation |
217 | C.5.3.3 Test protocol |
218 | C.5.3.4 Test results |
219 | C.5.3.5 Summary and lessons learned |
220 | Annex D (informative) Rationale supporting simplified product installation criteria D.1 General D.2 Class E2 |
221 | D.3 Class E10 |
222 | D.4 Class E100 |
224 | D.5 Class E+ |
225 | D.6 Simplified formulas for millimetre-wave antennas using massive MIMO or beam steering |
227 | Annex E (informative) Technology-specific exposure evaluation guidance E.1 Overview to guidance on specific technologies E.2 Summary of technology-specific information |
228 | E.3 Guidance on spectrum analyser settings E.3.1 Overview of spectrum analyser settings |
229 | E.3.2 Detection algorithms E.3.3 Resolution bandwidth and channel power processing E.3.3.1 Measurement at a single frequency |
231 | E.3.3.2 Measurement over a bandwidth and channel power processing |
232 | E.3.4 Integration per service E.3.4.1 General E.3.4.2 Example of settings E.4 Stable transmitted power signals E.4.1 TDMA/FDMA technology |
233 | E.4.2 WCDMA/UMTS technology |
234 | E.4.3 OFDM technology E.5 WCDMA measurement and calibration using a code domain analyser E.5.1 WCDMA measurements – General E.5.2 WCDMA decoder characteristics |
235 | E.5.3 Calibration E.5.3.1 Signal types used for calibration |
236 | E.5.3.2 Source (generator) calibration E.5.3.3 WCDMA decoder calibration |
237 | E.6 Wi-Fi measurements E.6.1 General E.6.2 Integration time for reproducible measurements |
238 | E.6.3 Channel occupation |
239 | E.6.4 Some considerations E.6.5 Measurement configuration and steps |
240 | E.6.6 Influence of the application layers E.6.7 Power control E.7 LTE measurements E.7.1 Overview E.7.2 LTE transmission modes |
241 | E.7.3 LTE-FDD frame structure |
242 | E.7.4 LTE-TDD frame structure |
244 | E.7.5 Maximum LTE exposure evaluation E.7.5.1 General E.7.5.2 Method using a dedicated decoder |
246 | E.7.5.3 Method using a basic spectrum analyser |
249 | E.7.5.4 Method for beamforming antennas E.7.6 Instantaneous LTE exposure evaluation |
250 | E.7.7 MIMO multiplexing of LTE BS E.8 NR BS measurements E.8.1 General E.8.2 Maximum NR exposure evaluation E.8.2.1 NR signal extrapolation based on SSB E.8.2.1.1 General |
251 | E.8.2.1.2 Method using a dedicated NR decoder |
252 | E.8.2.1.3 Method using a spectrum analyser E.8.2.1.3.1 SSB mapping |
254 | E.8.2.1.3.2 SSB gating |
257 | E.8.2.1.4 Method for beamforming antennas |
258 | E.8.2.2 NR exposure extrapolation based on CSI-RS E.8.2.2.1 Domain of application E.8.2.2.2 CSI-RS configuration of the BS |
259 | E.8.2.2.3 Measurement method using a dedicated decoder |
260 | E.9 Establishing compliance boundaries using numerical simulations of MIMO array antennas emitting correlated waveforms E.9.1 General E.9.2 Field combining near base stations for correlated exposure with the purpose of establishing compliance boundaries |
261 | E.9.3 Numerical simulations of MIMO array antennas with densely packed columns E.9.4 Numerical simulations of large MIMO array antennas |
262 | E.10 Massive MIMO antennas E.10.1 Overview E.10.2 Deterministic conservative approach E.10.3 Statistical conservative approach |
263 | E.10.4 Example approaches E.10.4.1 General |
265 | E.10.4.2 Deterministic conservative power density model E.10.4.3 Long term time-average power density model E.10.4.4 Statistical conservative power density model E.10.4.4.1 Overview |
266 | E.10.4.4.2 Establishing the single user conservative power density E.10.4.4.3 Determining horizontal gain modification factors |
267 | E.10.4.4.4 Determining N |
268 | E.10.4.4.5 Determining Ssta E.10.4.5 Power density evaluation for LTE-TDD E.10.4.5.1 Overview |
269 | E.10.4.5.2 Determining power density of traffic channel E.10.4.5.2.1 Traffic channel power density distribution |
270 | E.10.4.5.2.2 Ratios of the three types of TS E.10.4.5.2.3 Control channel power density distribution E.10.4.5.2.4 Summary |
271 | E.10.4.5.3 Example of a massive MIMO antenna |
273 | E.10.4.6 Power density evaluation for NR BS E.10.4.6.1 General E.10.4.6.2 Determining power density of traffic channel E.10.4.6.2.1 Traffic channel power density distribution |
274 | E.10.4.6.2.2 Control channel power density E.10.4.6.2.3 Summary E.10.4.6.3 Case study for power density evaluation for NR BS |
277 | E.10.4.7 Actual maximum transmitted power evaluation |
279 | Annex F (informative) Guidelines for the assessment of BS compliance with ICNIRP-2020 brief exposure limits F.1 General F.2 Brief exposure limits |
281 | F.3 Implications of brief exposure limits on signal modulation and TDD duty cycle F.4 Implications of brief exposure limits on the actual maximum approach |
285 | Annex G (informative) Uncertainty G.1 Background G.2 Requirement to estimate uncertainty G.3 How to estimate uncertainty |
286 | G.4 Guidance on uncertainty and assessment schemes G.4.1 General G.4.2 Overview of assessment schemes |
287 | G.4.3 Examples of assessment schemes G.4.3.1 Examples of general assessment schemes |
288 | G.4.3.2 Example target uncertainty-based assessment scheme G.4.3.2.1 Target uncertainty assessment scheme principles |
289 | G.4.3.2.2 Determining the target uncertainty G.4.3.2.3 Assessment of compliance with an exposure limit G.4.3.2.3.1 Overview G.4.3.2.3.2 Method |
290 | G.4.4 Assessment schemes and compliance probabilities G.4.4.1 Assessment scheme uncertainty and compliance probabilities overview G.4.4.2 Monte Carlo simulation of target uncertainty-based assessment scheme |
292 | G.4.4.3 Compliance error probability simulation G.5 Guidance on uncertainty G.5.1 Overview |
293 | G.5.2 Measurement uncertainty and confidence levels |
294 | G.6 Applying uncertainty for compliance assessments |
295 | G.7 Example influence quantities for field measurements G.7.1 General G.7.2 Calibration uncertainty of measurement antenna or field probe G.7.3 Frequency response of the measurement antenna or field probe |
297 | G.7.4 Isotropy of the measurement antenna or field probe G.7.5 Frequency response of the spectrum analyser G.7.6 Temperature response of a broadband field probe |
298 | G.7.7 Linearity deviation of a broadband field probe G.7.8 Mismatch uncertainty G.7.9 Deviation of the experimental source from numerical source G.7.10 Meter fluctuation uncertainty for time-varying signals |
299 | G.7.11 Uncertainty due to power variation in the RF source G.7.12 Uncertainty due to field gradients G.7.12.1 General G.7.12.2 Uncertainty due to field gradients when using dipoles |
300 | G.7.12.3 Uncertainty due to field gradients when using loop antennas G.7.13 Mutual coupling between measurement antenna or isotropic probe and object |
301 | G.7.14 Uncertainty due to field scattering from the surveyor’s body |
303 | G.7.15 Measurement device G.7.16 Fields out of measurement range |
304 | G.7.17 Noise G.7.18 Integration time G.7.19 Power chain G.7.20 Positioning system G.7.21 Matching between probe and the EUT G.7.22 Drifts in output power of the EUT, probe, temperature, and humidity G.7.23 Perturbation by the environment |
305 | G.8 Example influence quantities for RF field strength computations by ray tracing or full wave methods G.8.1 General G.8.2 System G.8.2.1 Transmitted power G.8.2.2 System losses G.8.2.3 Antenna |
306 | G.8.2.4 Modelling of antenna structures and supports G.8.3 Technique uncertainties G.8.4 Environmental uncertainties |
307 | G.9 Influence quantities for SAR measurements G.9.1 General G.9.2 Post-processing G.9.3 EUT holder G.9.3.1 General |
308 | G.9.3.2 EUT holder perturbation uncertainty for specific types of EUTs: type A G.9.3.3 EUT holder perturbation uncertainty for a specific EUT: type B G.9.4 EUT positioning G.9.4.1 General |
309 | G.9.4.2 Positioning uncertainty of a specific EUT in a specific holder G.9.4.3 Positioning uncertainty of specific types of EUTs in a specific holder G.9.5 Phantom shell uncertainty G.9.6 SAR correction depending on target liquid permittivity and conductivity G.9.7 Liquid permittivity and conductivity measurements |
310 | G.9.8 Liquid temperature G.10 Influence quantities for SAR calculations G.11 Spatial averaging G.11.1 General |
311 | G.11.2 Small-scale fading variations G.11.3 Error on the estimation of local average power density G.11.3.1 Definition of the error on estimated average power density G.11.3.2 Determination of significant statistical parameters |
312 | G.11.3.3 Estimation of the error on the estimation of local average power density G.11.4 Characterization of environment statistical properties |
313 | G.11.5 Characterization of different spatial averaging schemes G.11.5.1 General |
317 | G.11.5.2 Example of uncertainty assessment G.12 Influence of human body on measurements of the electric RF field strength G.12.1 Simulations of the influence of human body on measurements based on the method of moments (surface equivalence principle) G.12.1.1 Background G.12.1.2 Simulation parameters |
318 | G.12.1.3 Results of electrical probe simulations |
319 | G.12.2 Comparison with measurements G.12.3 Conclusions |
321 | Annex H (informative) Guidance on comparing evaluated parameters with a limit value H.1 Overview H.2 Information recommended to compare evaluated value against limit value H.3 Performing a limit comparison at a given confidence level |
322 | H.4 Performing a limit comparison using a process-based assessment scheme Bibliography |